Carrier-Grade Ethernet for Power Utilities

Towards a Smarter Grid: Utility Networks in Transition

Power utility networks today are undergoing a revolutionary transformation: SDH/SONET infrastructure and legacy substation devices are being phased out to make way for Ethernet transport and IP/packet-based networks. The key driver for the transition to next generation communications is the move towards Smart Grids, as packet transport’s high capacity and lower OpEx are required to handle the amount of bursty traffic generated by the advanced grid applications envisioned in intelligent power networks. IP SCADA systems (Ethernet Supervisory Control and Data Acquisition), wide area situation awareness (WASA) synchrophasor measurements and recent developments in substation automation (SA), such as the IEC 61850 standard are examples of new applications that mandate the use of packet switched networks and Ethernet capabilities throughout the transmission and distribution (T&D) grids. Other drivers include the use of high-resolution, IP-based video surveillance equipment, as well as wholesale and Utelco services providing broadband access for local businesses and service providers. Almost every power utility around the globe is either planning or has already begun the transformation of its T&D grid into an intelligent, packet-based network that can efficiently and reliably handle massive amounts of bi-directional or even multi-directional data communications between various devices and locations.

Spend Forecasts

This trend is also evident from spending forecasts: According to a survey conducted by the Utilities Telecom Council (UTC) in 2011, Information Communications Technology (ICT) spending by US utility companies was estimated at $3.2 billion on telecommunications equipment and services; with spending on transport networks representing the second largest category following two-way metering1. According to a Pike Research study, equipment shipments for various Smart Grid applications, including distribution automation (DA) and substation automation in the WAN portion of the network, are expected to grow from 19 Million units in 2009 to nearly 103 Million in 20202 1 Utilities Telecom Market Spending Forecast, UTC, 2011 2 Smart Grid Networking and Communications Report, 2012, Pike Research – A Part of Navigant Consulting .

In a 2012 survey among power utilities conducted by RAD, 24% of respondents reported that they have already started the migration process, while a similar rate reported their plan to do so within the next 12-24 months, and 16% over the next five years. Most (43%) of the respondents reported the communications network backbone as the first candidate for transition, while over 28% will begin with their SCADA system. Understandably, respondents were more hesitant about migrating their Teleprotection systems.

The decision on which packet technology to use depends to a great extent on who is driving the transition within the utility organization. Those in charge of the distribution network, particularly the HAN (Home Area Network) and smart meters tend to prefer routable IP/MPLS as it enables a simpler addition of new devices to the network, while operations engineers find Layer 2 technology easier to manage in terms of bandwidth control, OAM, and security. Chapter 4 below reviews the various strengths and weaknesses of different packet technologies.

Download full article PDF: 24861_Carrier-Grade-Ethernet-for-Power-Utilities-Solution-Paper